Rapid and highly sensitive detection of Enterovirus 71 by using nanogold-enhanced electrochemical impedance spectroscopy.

نویسندگان

  • Hsing-Yuan Li
  • Shing-Hua Tseng
  • Tsai-Mu Cheng
  • Hsueh-Liang Chu
  • Yu-Ning Lu
  • Fang-Yu Wang
  • Li-Yun Tsai
  • Juo-Yu Shieh
  • Jyh-Yuan Yang
  • Chien-Chang Juan
  • Lung-Chen Tu
  • Chia-Ching Chang
چکیده

Enterovirus 71 (EV71) infection is an emerging infectious disease causing neurological complications and/or death within two to three days after the development of fever and rash. A low viral titre in clinical specimens makes the detection of EV71 difficult. Conventional approaches for detecting EV71 are time consuming, poorly sensitive, or complicated, and cannot be used effectively for clinical diagnosis. Furthermore, EV71 and Coxsackie virus A16 (CA16) may cross react in conventional assays. Therefore, a rapid, highly sensitive, specific, and user-friendly test is needed. We developed an EV71-specific nanogold-modified working electrode for electrochemical impedance spectroscopy in the detection of EV71. Our results show that EV71 can be distinguished from CA16, Herpes simplex virus, and lysozyme, with the modified nanogold electrode being able to detect EV71 in concentrations as low as 1 copy number/50 μl reaction volume, and the duration between sample preparation and detection being 11 min. This detection platform may have the potential for use in point-of-care diagnostics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid and sensitive electrochemical detection of DNA with Silver nanoparticle dispersed poly (9, 9-dioctylfluorene-ran-phenylene) nanocomposites

In this study a sensitive electrochemical sensor for the detection of E.coli has been developed using silver nanoparticle (Ag) embedded poly(9,9-dioctylfluorene-ran-phenylene) (CFP) nanocomposite as a conductive platform and DNA hybridization technique. The new polymer was synthesized from 9,9-dioctylfluorene and 1,3-dichlorobenzene and biphenyl through Friedel Crafts alkylation reacti...

متن کامل

Human haptoglobin phenotypes and concentration determination by nanogold-enhanced electrochemical impedance spectroscopy.

Haptoglobin (Hp) is an acute phase protein that binds free hemoglobin (Hb), preventing Hb-induced oxidative damage in the vascular system. There are three phenotypes in human Hp, whose heterogeneous polymorphic structures and varying concentrations in plasma have been attributed to the cause of diseases and outcome of clinical treatments. Different phenotypes of Hp may be composed of the same s...

متن کامل

Stress Corrosion Cracking Detection of Sensitized Stainless Steel 304 in Chloride Media by Using Electrochemical Impedance Spectroscopy (EIS)

Electrochemical impedance spectroscopy (EIS) was used to detect stress corrosion cracking (SCC) in stainless steel 304 alloy exposed to an aqueous environment at 120 °C. Stainless steel 304 alloy as u-bend was tested in the solution that contains 40 weight percent of magnesium chloride. U-bended samples were prepared according to ASTM G30. EIS measurements were always performed simultaneously o...

متن کامل

An impedance immunosensor for the detection of the phytohormone abscisic acid.

The phytohormone abscisic acid (ABA) is the major player in mediating the adaptation of plants to stress. Previously developed phytohormonal biosensors usually employed indirect detection of the products of conjugated oxidase reactions. A label-free electrochemical impedance immunosensor for ABA detection was developed using an anti-ABA antibody adsorbed directly on a porous nanogold film. The ...

متن کامل

Label-Free Toxin Detection by Means of Time-Resolved Electrochemical Impedance Spectroscopy

The real-time detection of trace concentrations of biological toxins requires significant improvement of the detection methods from those reported in the literature. To develop a highly sensitive and selective detection device it is necessary to determine the optimal measuring conditions for the electrochemical sensor in three domains: time, frequency and polarization potential. In this work we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 24 28  شماره 

صفحات  -

تاریخ انتشار 2013